1,极限存在的条件必须有超强的信念2,函数极限是否存在5/4,10,不存在~3,如何判断一个函数的极限是否存在设f:(a,+∞)→R是一个一元实值函数,a∈R.如果对于任意给定的ε>0,存在正数X,使得对于适合不等式x>X的一切x,所对应的函数值f(x)都满足不等式.│f(x)-A│<ε,则称数A为
1,极限存在的条件
2,函数极限是否存在
3,如何判断一个函数的极限是否存在
设f:(a,+∞)→R是一个一元实值函数,a∈R.如果对于任意给定的ε>0,存在正数X,使得对于适合不等式x>X的一切x,所对应的函数值f(x)都满足不等式. │f(x)-A│<ε , 则称数A为函数f(x)当x→+∞时的极限,记作 f(x)→A(x→+∞).有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。 两边夹定理:(1)当x∈U(Xo,r)(这是Xo的去心邻域,有个符号打不出)时,有g(x)≤f(x)≤h(x)成立 (2)g(x)—>Xo=A,h(x)—>Xo=A,那么,f(x)极限存在,且等于A 不但能证明极限存在,还可以求极限,主要用放缩法。 单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。 在运用它们去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。函数极限的方法 ① 利用函数连续性:lim f(x) = f(a) x->a (就是直接将趋向值带出函数自变量中,此时要要求分母不能为0) ②恒等变形 当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决: 第一:因式分解,通过约分使分母不会为零。 第二:若分母出现根号,可以配一个因子是根号去除。 第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小) 当然还会有其他的变形方式,需要通过练习来熟练。 ③通过已知极限判断一个函数在某一点的极限存在1、存在左右极限且左极限等于右极限2、有导函数,且导函数在该点连续 注意:函数在该点是否有定义,是否连续,这与该函数在该点是否有极限是无关的4,怎么判断一个函数极限存在
判断一个函数在某一点的极限存在1、存在左右极限且左极限等于右极限2、有导函数,且导函数在该点连续 注意:函数在该点是否有定义,是否连续,这与该函数在该点是否有极限是无关的没有说什么准则了,你可以求它的极限啊,如果是无穷那就是不存在了。它再复杂也要运用一些方法(罗比达法则,等价无穷小,泰乐公式,等)进行化简,求出极限。望采纳谢谢(1)存在左右极限且左极限等于右极限(2)函数连续(3)函数的值等于该点处极限值满足这三点就可以了,希望能够帮到你没有说什么准则了,你可以求它的极限啊,如果是无穷那就是不存在了。它再复杂也要运用一些方法(罗比达法则,等价无穷小,泰乐公式,等)进行化简,求出极限。望采纳谢谢设f:(a,+∞)→R是一个一元实值函数,a∈R.如果对于任意给定的ε>0,存在正数X,使得对于适合不等式x>X的一切x,所对应的函数值f(x)都满足不等式. │f(x)-A│<ε , 则称数A为函数f(x)当x→+∞时的极限,记作 f(x)→A(x→+∞).有些函数的极限很难或难以直接运用极限运算法则求得,需要先判定。下面介绍几个常用的判定数列极限的定理。 两边夹定理:(1)当x∈U(Xo,r)(这是Xo的去心邻域,有个符号打不出)时,有g(x)≤f(x)≤h(x)成立 (2)g(x)—>Xo=A,h(x)—>Xo=A,那么,f(x)极限存在,且等于A 不但能证明极限存在,还可以求极限,主要用放缩法。 单调有界准则:单调增加(减少)有上(下)界的数列必定收敛。 在运用它们去求函数的极限时尤需注意以下关键之点。一是先要用单调有界定理证明收敛,然后再求极限值。二是应用夹挤定理的关键是找到极限值相同的函数 ,并且要满足极限是趋于同一方向 ,从而证明或求得函数 的极限值。函数极限的方法 ① 利用函数连续性:lim f(x) = f(a) x->a (就是直接将趋向值带出函数自变量中,此时要要求分母不能为0) ②恒等变形 当分母等于零时,就不能将趋向值直接代入分母,可以通过下面几个小方法解决: 第一:因式分解,通过约分使分母不会为零。 第二:若分母出现根号,可以配一个因子是根号去除。 第三:以上我所说的解法都是在趋向值是一个固定值的时候进行的,如果趋向于无穷,分子分母可以同时除以自变量的最高次方。(通常会用到这个定理:无穷大的倒数为无穷小) 当然还会有其他的变形方式,需要通过练习来熟练。 ③通过已知极限lim(x->x0)f(x) existslim(x->x0+)f(x)=lim(x->x0-)f(x)=lim(x->x0)f(x)